A New Method of Fault Feature Extraction Based on Hierarchical Dispersion Entropy

Author:

Chen Peng12,Zhao Xiaoqiang134ORCID,Jiang HongMei134

Affiliation:

1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. College of Electrical and Electronic Engineering, Lanzhou Petrochemical Polytechnic, Lanzhou 730060, China

3. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, China

4. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

In the process of fault feature extraction of rolling bearing, the feature information is difficult to be extracted fully. A novel method of fault feature extraction called hierarchical dispersion entropy is proposed in this paper. In this method, the vibration signals firstly are decomposed hierarchically. Secondly, dispersion entropies of different nodes are calculated. Hierarchical dispersion entropy can realize the comprehensive feature extraction of the high- and low-frequency band information of vibration signals and overcome the problems that dispersion entropy and multiscale dispersion entropy are insufficient to extract the fault feature information of vibration signals. The feasibility of hierarchical dispersion entropy is obtained by analyzing the hierarchical dispersion entropy of Gaussian white noise and compared with the multiscale dispersion entropy of Gaussian white noise. Meanwhile, a fault diagnosis method for rolling bearings based on hierarchical dispersion entropy and k-nearest neighbor (KNN) classifier is developed. Finally, the superiority of the proposed fault diagnosis method is verified in the realization of fault diagnosis of the rolling bearing in different positions and different degrees of damage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3