Affiliation:
1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China
Abstract
Slope entropy (SlopEn) has been widely applied in fault diagnosis and has exhibited excellent performance, while SlopEn suffers from the problem of threshold selection. Aiming to further enhance the identifying capability of SlopEn in fault diagnosis, on the basis of SlopEn, the concept of hierarchy is introduced, and a new complexity feature, namely hierarchical slope entropy (HSlopEn), is proposed. Meanwhile, to address the problems of the threshold selection of HSlopEn and a support vector machine (SVM), the white shark optimizer (WSO) is applied to optimize both HSlopEn and an SVM, and WSO-HSlopEn and WSO-SVM are proposed, respectively. Then, a dual-optimization fault diagnosis method for rolling bearings based on WSO-HSlopEn and WSO-SVM is put forward. We conducted measured experiments on single- and multi-feature scenarios, and the experimental results demonstrated that whether single-feature or multi-feature, the WSO-HSlopEn and WSO-SVM fault diagnosis method has the highest recognition rate compared to other hierarchical entropies; moreover, under multi-features, the recognition rates are all higher than 97.5%, and the more features we select, the better the recognition effect. When five nodes are selected, the highest recognition rate reaches 100%.
Funder
Natural Science Foundation of Shaanxi Province
Xi’an University of Technology Excellent Seed Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献