Affiliation:
1. Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari 09123, Italy
2. Univ Coimbra, CISUC-Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
Abstract
The Nocturnal Frontal Lobe Epilepsy (NFLE) is a form of epilepsy in which seizures occur predominantly during sleep. In other forms of epilepsy, the commonly used clinical approach mainly involves manual inspection of encephalography (EEG) signals, a laborious and time-consuming process which often requires the contribution of more than one experienced neurologist. In the last decades, numerous approaches to automate this detection have been proposed and, more recently, machine learning has shown very promising performance. In this paper, an original Convolutional Neural Network (CNN) architecture is proposed to develop patient-specific seizure detection models for three patients affected by NFLE. The performances, in terms of accuracy, sensitivity, and specificity, exceed by several percentage points those in the most recent literature. The capability of the patient-specific models has been also tested to compare the obtained seizure onset times with those provided by the neurologists, with encouraging results. Moreover, the same CNN architecture has been used to develop a cross-patient seizure detection system, resorting to the transfer-learning paradigm. Starting from a patient-specific model, few data from a new patient are enough to customize his model. This contribution aims to alleviate the task of neurologists, who may have a robust indication to corroborate their clinical conclusions.
Funder
EU FP 7 Project EPILEPSIAE
Subject
Multidisciplinary,General Computer Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献