Detection of epileptic seizure events using pre‐trained convolutional neural network, VGGNet and ResNet

Author:

Thara D. K.1ORCID,Premasudha B. G.2,Krivic Senka3

Affiliation:

1. Department of Information Science & Engineering Channabasaveshwara Institute of Technology Tumkur Karnataka India

2. Department Master of Computer Applications Siddaganga Institute of Technology Tumkur Karnataka India

3. Faculty of Electrical Engineering University of Sarajevo Sarajevo Bosnia and Herzegovina

Abstract

AbstractEpilepsy is a life threatening neurological disorder. The person with epilepsy suffers from recurrent seizures. Sudden emission of electrical signal in the nerves of the human brain is called seizure event. The most widely used method for diagnosing epilepsy is analysing electroencephalogram signals in short called as EEG signals collected from the scalp of the patient. The EEG data are normally used for seizure detection. If the recurrent seizure signals are detected in the input EEG dataset, then it can be considered as the presence of epilepsy disorder. Manual inspection of seizure signals in the EEG data is a laborious process. An automated system is very crucial for the neurologists to identify seizures. In this paper, an automated seizure detection method is presented using deep learning method, pre‐trained convolutional neural network architecture. Freely available EEG dataset from Temple University Hospital database is used for the study. The pre‐trained CNN networks, VGGNet and ResNet are used for classifying the seizure activities from non‐seizure activities. CNNs are extremely good in learning the features of the input data. A very large dataset from TUH is provided as input to the multiple layers of CNN model. The same data is fed to VGGNet and ResNet models. The results of CNN, VGGNet and ResNet models are assessed using performance metrics accuracy, AUC, precision and recall. All the three models gave extremely good performance compared to state‐of‐the‐art works in the literature. In comparison VGGNet performed with little higher results giving 97% accuracy, 96% AUC, 97% precision and 79% recall.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3