Two-Echelon Location-Routing Problem with Time Windows and Transportation Resource Sharing

Author:

Wang Yong1ORCID,Sun Yaoyao1ORCID,Guan Xiangyang2ORCID,Guo Yanyong3ORCID

Affiliation:

1. School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China

2. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA

3. School of Transportation, Southeast University, Nanjing 210096, China

Abstract

In this work, a two-echelon location-routing problem with time windows and transportation resource sharing (2E-LRPTWTRS) is solved by selecting facility locations and optimizing two-echelon vehicle routes. The optimal solutions improve the efficiency of a logistics network based on the geographical distribution and service time windows of logistics facilities and customers. Furthermore, resource utilization is maximized by enabling resource sharing strategies within and among different logistics facilities simultaneously. The 2E-LRPTWTRS is formulated as a biobjective optimization model, and obtaining the smallest number of required delivery vehicles and the minimum total operating cost are the two objective functions. A two-stage hybrid algorithm composed of k-means clustering and extended multiobjective particle swarm optimization algorithm is proposed for 2E-LRPTWTRS optimization. A self-adaptive mechanism of flight parameters is introduced and adopted during the iterative process to balance the evolution of particles and improve the efficiency of the two-stage hybrid algorithm. Moreover, 20 small-scale instances are used for an algorithm comparison with multiobjective genetic algorithm and nondominated sorting genetic algorithm-II, and the solutions demonstrate the superiority of the proposed algorithm in optimizing logistics networks. The proposed optimization model and hybrid algorithm are tested by employing a real-world case of 2E-LRPTWTRS in Chongqing, China, and the optimization results verify the positive role of the developed model and algorithm in improving logistics efficiency, reducing operating cost, and saving transportation resources in the operations of two-echelon logistics networks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3