Location-Routing Optimization for Two-Echelon Cold Chain Logistics of Front Warehouses Based on a Hybrid Ant Colony Algorithm

Author:

Zhang Xuya1ORCID,Wang Yue1,Zhang Dongqing1

Affiliation:

1. College of Information Management, Nanjing Agricultural University, Nanjing 210031, China

Abstract

Diverse demands have promoted the rapid development of the cold chain logistics industry. In the paper, a novel approach for calculating the comprehensive carbon emission cost was proposed and the front warehouse mode was analyzed under the background of energy conservation and emission reduction. To solve the two-echelon low-carbon location-routing problem (2E-LCLRP), a mathematical model considering operating cost, total transportation cost, fixed cost, refrigeration cost, cargo damage cost, and comprehensive carbon emission cost was proposed to determine the minimum total cost. A hybrid ant colony optimization (HACO) algorithm based on an elbow rule and an improved ant colony optimization (IACO) algorithm was proposed to solve the 2E-LCLRP. According to the elbow rule, the optimal number of front warehouses was determined and an IACO algorithm was then designed to optimize vehicle routes. An adaptive hybrid selection strategy and an optimized pheromone update mechanism were integrated into the HACO algorithm to accelerate convergence and obtain global optimal solutions. The proposed model and algorithm were verified through the case study of the 2E-LCLRP in Nanjing, China. The HACO algorithm outperformed the original ant colony optimization (ACO) algorithm in terms of convergence rate and solution quality. This study provides significant insights for enhancing heuristic algorithms as well as valuable research methods. Furthermore, the results can help cold chain logistics companies in balancing economic costs and environmental benefits and address cold chain distribution of agricultural products.

Funder

National College Student Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3