Multistability Analysis, Coexisting Multiple Attractors, and FPGA Implementation of Yu–Wang Four-Wing Chaotic System

Author:

Yu Fei12ORCID,Liu Li1ORCID,Shen Hui1ORCID,Zhang Zinan1ORCID,Huang Yuanyuan1ORCID,Cai Shuo1ORCID,Deng Zelin1ORCID,Wan Qiuzhen3ORCID

Affiliation:

1. School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

3. Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China

Abstract

In this paper, we further study the dynamic characteristics of the Yu–Wang chaotic system obtained by Yu and Wang in 2012. The system can show a four-wing chaotic attractor in any direction, including all 3D spaces and 2D planes. For this reason, our interest is focused on multistability generation and chaotic FPGA implementation. The stability analysis, bifurcation diagram, basin of attraction, and Lyapunov exponent spectrum are given as the methods to analyze the dynamic behavior of this system. The analyses show that each system parameter has different coexistence phenomena including coexisting chaotic, coexisting stable node, and coexisting limit cycle. Some remarkable features of the system are that it can generate transient one-wing chaos, transient two-wing chaos, and offset boosting. These phenomena have not been found in previous studies of the Yu–Wang chaotic system, so they are worth sharing. Then, the RK4 algorithm of the Verilog 32-bit floating-point standard format is used to realize the autonomous multistable 4D Yu–Wang chaotic system on FPGA, so that it can be applied in embedded engineering based on chaos. Experiments show that the maximum operating frequency of the Yu–Wang chaotic oscillator designed based on FPGA is 161.212 MHz.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3