Affiliation:
1. Department of Applied Electronics, Roma TRE University, Rome, Italy
Abstract
In this work a time-frequency approach to estimate the Cortico-Muscular Coherence for the detection of the movement intent is presented, assessed on simulated data, and evaluated experimentally during different motor tasks performed by healthy subjects and patients suffering from different types of tremor. Cortico-Muscular Coherence is an index of the coupling of EEG signal in the cortical area with sEMG activity in the frequency domain, and its contributions in the beta band (15–30 Hz) have been associated to the movement intent. Cortico-Muscular Coherence estimation is here achieved by considering a closed-loop representation of the signals under analysis obtained through Multivariate Auto Regressive modeling. Significance levels for Cortico-Muscular Coherence are assessed by means of a surrogate data analysis approach. The detection technique is able to reveal significant Cortico-Muscular Coherence changes in 79% of the experimental trials, with a mean anticipation of 1.35 s with respect to movement onset. Time-frequency estimation of Cortico-Muscular Coherence can provide an insight for the development of a multimodal BCI able to integrate information from the brain activity in the functioning of assistive devices.
Subject
Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献