Coherence between electromyographic signals of anterior tibialis, soleus, and gastrocnemius during standing balance tasks

Author:

Ojha Anuj,Alderink Gordon,Rhodes Samhita

Abstract

IntroductionKnowledge about the mechanics and physiological features of balance for healthy individuals enhances understanding of impairments of balance related to neuropathology secondary to aging, diseases of the central nervous system (CNS), and traumatic brain injury, such as concussion.MethodsWe examined the neural correlations during muscle activation related to quiet standing from the intermuscular coherence in different neural frequency bands. Electromyography (EMG) signals were recorded from six healthy participants (fs = 1,200 Hz for 30 s) from three different muscles bilaterally: anterior tibialis, medial gastrocnemius, and soleus. Data were collected for four different postural stability conditions. In decreasing order of stability these were feet together eyes open, feet together eyes closed, tandem eyes open, and tandem eyes closed. Wavelet decomposition was used to extract the neural frequency bands: gamma, beta, alpha, theta, and delta. Magnitude-squared-coherence (MSC) was computed between different muscle pairs for each of the stability conditions.Results and discussionThere was greater coherence between muscle pairs in the same leg. Coherence was greater in lower frequency bands. For all frequency bands, the standard deviation of coherence between different muscle pairs was always higher in the less stable positions. Time-frequency coherence spectrograms also showed higher intermuscular coherence for muscle pairs in the same leg and in less stable positions. Our data suggest that coherence between EMG signals may be used as an independent indicator of the neural correlates for stability.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3