Affiliation:
1. Department of Chemical Engineering, Universidad Católica del Norte, 1270709 Antofagasta, Chile
2. Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
Abstract
In wastewater treatment plants, the degradation of complex substances that contaminate water is carried out by microorganisms, which are fixed by a network formed by filamentous bacteria, creating large flocs that settle easily. However, the excessive growth of said bacteria causes a series of drawbacks such as the reduction of settling velocity, leakage of activated sludge with the effluent, and formation of supernatant, a phenomenon known as bulking. This research work seeks to develop and evaluate a procedure for the physical characterization of the flocs to determine the parameters that affect the settling velocity and thereby detect and control bulking. For this purpose, sedimentation and image analysis tests were carried out from wastewater from the Aguas Antofagasta treatment plant (Chile). The image analysis was performed with images captured from an optical microscope in two magnifications (100x and 50x), which were analyzed by marking each floc individually and characterized by an image processing software. Additionally, sedimentation tests were performed on columns (area of 74 (cm2) and height of 70 (cm)). As a result, an inversely proportional dependence was found on the settling velocity evaluated by the Vesilind equation in the zone of constant fall velocity with respect to the number of flocs connected per cluster, giving an estimate of the settling velocity depending on the number of flocs connected. This would allow predicting settling velocity with image analysis, taking into account that the problem of bulking is determined by the type of filamentous bacteria that causes it and the sedimentation process is affected in large part by local factors. It can be concluded through this study that as the number of flocs connected per cluster increases, the settling velocity decreases. This study provides wastewater treatment plants with a practical tool to determine sedimentation times and thus improve the quality of the treated water, avoiding problems of flocs leaking with the effluent. In addition, the image analysis itself allows rapid detection of the phenomenon of bulking and its severity.
Funder
Universidad Católica del Norte
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献