Image‐based characterization of flocculation processes through PLS inspired representation learning in convolutional neural networks

Author:

Baum Andreas1ORCID,Moiseyenko Rayisa1,Glanville Simon2,Martini Jørgensen Thomas1

Affiliation:

1. Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark

2. 091 Downstream Optimization, Product and Process Development Novonesis Kalundborg Denmark

Abstract

AbstractMonitoring of flocculation processes such as those used in downstream processing of a fermentation broth is essential for process control. One approach is to apply microscopic imaging combined with image analysis for characterizing the state of the process. In this work, we investigate and compare the use of supervised feedforward convolutional neural network (CNN) architectures to predict the process states from the image information and compare the results with the traditional alternative of characterizing flocs based on manually engineered image features guided by human expertise. From a well‐defined image data set representing six process states, the objective is to establish end‐to‐end classification models which are accurate but at the same time learn meaningful latent variable space representations. Specifically, we evaluate three different CNN architectures with varying degrees of regularization and compare results with logistic regression models based on inputs from two different traditional feature engineering methods. By applying global average pooling as a structural regularizer to the CNN architecture, we significantly improve the generalization performance in comparison with the classification accuracies of the traditional feature engineered models. Furthermore, we show that by imposing a projection to latent structures (PLS) like regularization framework onto the CNN, it can also learn a latent variable representation that mimics the features selected by human expertise.

Funder

Danmarks Tekniske Universitet

Innovationsfonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3