Speeding Up FPGA Placement via Partitioning and Multithreading

Author:

Ababei Cristinel1

Affiliation:

1. Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108-6050, USA

Abstract

One of the current main challenges of the FPGA design flow is the long processing time of the placement and routing algorithms. In this paper, we propose a hybrid parallelization technique of the simulated annealing-based placement algorithm of VPR developed in the work of Betz and Rose (1997). The proposed technique uses balanced region-based partitioning and multithreading. In the first step of this approach placement subproblems are created by partitioning and then processed concurrently by multiple worker threads that are run on multiple cores of the same processor. Our main goal is to investigate the speedup that can be achieved with this simple approach compared to previous approaches that were based on distributed computing. The new hybrid parallel placement algorithm achieves an average speedup of2.5×using four worker threads, while the total wire length and circuit delay after routing are minimally degraded.

Funder

North Dakota State University

Publisher

Hindawi Limited

Subject

Hardware and Architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Grids and Hybrid Energy Storage Systems;Research Anthology on Smart Grid and Microgrid Development;2022

2. TRAVERSAL: A Fast and Adaptive Graph-Based Placement and Routing for CGRAs;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021-08

3. Smart Grids and Hybrid Energy Storage Systems;Advances in Computer and Electrical Engineering;2021

4. A link-elimination partitioning approach for application graph mapping in reconfigurable computing systems;The Journal of Supercomputing;2019-11-07

5. Identification of Dynamic Circuit Specialization Opportunities in RTL Code;ACM Transactions on Reconfigurable Technology and Systems;2015-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3