A Fine-Grained Image Classification and Detection Method Based on Convolutional Neural Network Fused with Attention Mechanism

Author:

Zhang Yue1ORCID

Affiliation:

1. Centre for Modern Educational Technology, Henan College of Police, Zhengzhou 450000, Henan, China

Abstract

Due to the existence of attention system, people pay attention to the distinguishable area of the image, rather than directly receiving and processing the information of the whole image. This natural advantage makes attention mechanism widely used in fine-grained image classification. The research goal of fine-grained image classification task often is to differentiate subclass objects belonging to the same basic category. The difficulty of classification is that there are only slight local differences between different categories, but there may be large feature differences within the same category. At the same time, complex background features also bring interference factors to image recognition. In order to further extract discriminant regional features, this paper proposes a fine-grained image classification method WSFF-BCNN based on weak supervision feature fusion from two aspects: the improvement of the loss function in the training process of convolution neural network and the refinement of fine-grained image feature extraction. It uses the mixed attention of channel domain and spatial domain to obtain the detailed description information in the feature to highlight the response of the corresponding channel and spatial location in the feature map and pay attention to the attention characteristics of different dimensions. The original images of different sizes are input into the improved bilinear model to obtain multi-scale features. The large-scale features can represent the spatial location information of key areas, and the small-scale features represent the low-level features of the image. The backbone network of bilinear network uses ResNet50 to extract features and sample and zoom and uses bilinear pooling to fuse features of different scales to obtain a rich image feature representation.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3