Affiliation:
1. University of Trieste, Department of Engineering and Architecture, 34127 Trieste, Italy
Abstract
Glass material is largely used in buildings and facilities due to various motivations. Besides, glass still represents a vulnerable component for building occupants. Careful attention is required especially for glass elements that may be subjected to extreme design loads, such as impact, vibrations, etc. Among various approaches and techniques to prevent danger for people in case of glass breakage, multilayer antishatter safety films (ASFs) are commercially available for the retrofit of existing monolithic glass members. In the present research study, a multistep experimental program is presented to obtain the characterization of key input mechanical parameters that are required for the numerical analysis of glass elements protected by ASFs. Relevant characteristics are derived for the definition of an equivalent material and monolithic tape able to reproduce the ASF experimental outcomes. On the side of experiments, artificially aged specimens (healing process) are investigated. A major advantage is taken from small-scale peel and tensile tests on ASF samples, as well as Operational Modal Analysis (OMA) techniques for nondestructive vibration measurements on preliminary fractured specimens of ASF-bonded glass elements. Efficient Finite Element (FE) numerical models calibrated with the support of experimental data and Cohesive Zone Modelling (CZM) techniques are presented for discussion of comparative results, giving evidence of rather good estimates and possible extension of the multistep experimental procedure.
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献