Post-Fracture Stiffness and Residual Capacity Assessment of Film-Retrofitted Monolithic Glass Elements by Frequency Change

Author:

Bedon Chiara1ORCID,Fasan Marco1ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Trieste, Trieste, Italy

Abstract

The primary goal of safety films for glass in buildings is to retrofit existing monolithic elements and prevent, in the post-fracture stage, any fall-out of shards. Their added value is that—as far as the fragments are kept bonded—a cracked film-glass element can ensure a minimum residual mechanical and load-bearing capacity, which is strictly related to the shards interlocking and debond. To prevent critical issues, such a mechanical characterization is both important and uncertain, and requires specific methodologies. In this regard, a dynamic investigation is carried out on fractured film-bonded glass samples, to assess their post-fracture stiffness trends and its sensitivity to repeated vibrations. The adopted laboratory layout is chosen to assess the effects of random vibrations (220 repetitions) on a total of 12 cracked specimens in a cantilever setup (with 0.5–5 m/s2 the range of randomly imposed acceleration peaks). By monitoring the cracked vibration frequency, the film efficiency and corresponding residual bending stiffness of cracked glass samples are quantified as a function of damage severity, with a focus on fragments interlock. Quantitative experimental estimates are comparatively analyzed and validated with the support of finite element (FE) numerical models and analytical calculations. As shown—at least at the small-scale level—a progressive post-fracture stiffness reduction takes place under repeated random vibrations, and this implicitly affects the residual load-bearing capacity of glass members. Most importantly, for the tested configurations, it is shown that the cracked vibration frequency is minimally affected by crack geometry, and follows a rather linear decrease with the number of imposed random impacts (up to an average of ≈20 for each sample), thus confirming the retrofit potential and efficiency in providing some mechanical capacity through fragments interlock.

Funder

Università degli Studi di Trieste

Publisher

Hindawi Limited

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3