Affiliation:
1. School of Computer Science and Technology, Changchun University of Science and Technology, No. 7089, Weixing Road, Changchun, China
Abstract
To solve the problem of scoliosis recognition without a labeled dataset, an unsupervised method is proposed by combining the cascade gentle AdaBoost (CGAdaBoost) classifier and distance regularized level set evolution (DRLSE). The main idea of the proposed method is to establish the relationship between individual vertebrae and the whole spine with vertebral centroids. Scoliosis recognition can be transferred into automatic vertebral detection and segmentation processes, which can avoid the manual data-labeling processing. In the CGAdaBoost classifier, diversified vertebrae images and multifeature descriptors are considered to generate more discriminative features, thus improving the vertebral detection accuracy. After that, the detected bounding box represents an appropriate initial contour of DRLSE to make the vertebral segmentation more accurate. It is helpful for the elimination of initialization sensitivity and quick convergence of vertebra boundaries. Meanwhile, vertebral centroids are extracted to connect the whole spine, thereby describing the spinal curvature. Different parts of the spine are determined as abnormal or normal in accordance with medical prior knowledge. The experimental results demonstrate that the proposed method cannot only effectively identify scoliosis with unlabeled spine CT images but also have superiority against other state-of-the-art methods.
Funder
Science and Technology Development Program of Jilin Province, China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献