Evaluation of children’s oral diagnosis and treatment using imaging examination using AI based Internet of Things

Author:

Li Yan1,Qu Qizhi2,Yue Yuxue2,Guo Yuxuan3,Yi Xiuna1

Affiliation:

1. Department of Anesthesiology, Yantai Mountain Hospital, Yantai, Shandong, China

2. CT/MR Division, Liaocheng Third People’s Hospital, Liaocheng, Shandong, China

3. Department of Stomatology, Affiliated Hospital of Northwest University/Xi’an Third Hospital, Xi’an, Shaanxi, China

Abstract

BACKGROUND: Although cone beam computed tomography (CBCT) plays an important role in the diagnosis and treatment of oral diseases, its image segmentation method needs to be further improved, and there are still objections about the clinical application effect of general anesthesia (GA) on children’s dental fear (CDF). OBJECTIVE: This study aimed to investigate the application value of CBCT based on intelligent computer segmentation model in oral diagnosis and treatment of children in the context of biomedical signals, and to analyze the alleviating effect of GA on CDF. METHODS: Based on the regional level set (CV) algorithm, the local binary fitting (LBF) model was introduced to optimize it, and the tooth CBCT image segmentation model CV-LBF was established to compare the segmentation accuracy (SA), maximum symmetric surface distance (MSSD), average symmetric surface distance (ASSD), over segmentation rate (OR), and under segmentation rate (UR) between these model and other algorithms. 82 children with CDF were divided into general anesthesia group (GAG) (n= 38) and controls (n= 44) according to the voluntary principle of their families. Children in GAG were treated with GA and controls with protective fixed intervention. Children’s fear survey schedule-dental subscale (CFSS-DS) and Venham scores were counted before intervention in the two groups. CFSS-DS scores were recorded at 2 hours after intervention and after recovery in children in GAG. CFSS-DS and Venham scores were performed in all children 1 week after surgery. RESULTS: The results showed that the S⁢A value of CV-LBF algorithm was higher than that of region growing algorithm (P< 0.05). OR, UR, MSSD, and ASSD values of CV-LBF algorithm were evidently lower than those of other algorithms (P< 0.05). CFSS-DS scores were lower in GAG than in controls 2 hours after intervention and at return visits after 1 week of intervention (P< 0.001), and Venham scores were lower in GAG than in controls after intervention (P< 0.001). After intervention, the proportion of children with Venham grade 0, 1, 2, and 3 was obviously higher in GAG than in controls (P< 0.001), while the proportion of children with Venham grade 4 and 5 was clearly higher in controls than in GAG (P< 0.001). CONCLUSION: The results revealed that the computer intelligent segmentation model CV-LBF has potential application value in CBCT image segmentation of children’s teeth, and GA can effectively alleviate anxiety of children with CDF and can be used as biomedical signals.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3