Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion

Author:

Wang Minhui1ORCID,Tang Chang2ORCID,Chen Jiajia3ORCID

Affiliation:

1. Department of Pharmacy, People’s Hospital of Lian’shui County, Huai’an 223300, China

2. School of Computer Science, China University of Geosciences, Wuhan 430074, China

3. Department of Pharmacy, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai'an 223002, China

Abstract

Drug-target interactions play an important role for biomedical drug discovery and development. However, it is expensive and time-consuming to accomplish this task by experimental determination. Therefore, developing computational techniques for drug-target interaction prediction is urgent and has practical significance. In this work, we propose an effective computational model of dual Laplacian graph regularized matrix completion, referred to as DLGRMC briefly, to infer the unknown drug-target interactions. Specifically, DLGRMC transforms the task of drug-target interaction prediction into a matrix completion problem, in which the potential interactions between drugs and targets can be obtained based on the prediction scores after the matrix completion procedure. In DLGRMC, the drug pairwise chemical structure similarities and the target pairwise genomic sequence similarities are fully exploited to serve the matrix completion by using a dual Laplacian graph regularization term; i.e., drugs with similar chemical structure are more likely to have interactions with similar targets and targets with similar genomic sequence similarity are more likely to have interactions with similar drugs. In addition, during the matrix completion process, an indicator matrix with binary values which indicates the indices of the observed drug-target interactions is deployed to preserve the experimental confirmed interactions. Furthermore, we develop an alternative iterative strategy to solve the constrained matrix completion problem based on Augmented Lagrange Multiplier algorithm. We evaluate DLGRMC on five benchmark datasets and the results show that DLGRMC outperforms several state-of-the-art approaches in terms of 10-fold cross validation based AUPR values and PR curves. In addition, case studies also demonstrate that DLGRMC can successfully predict most of the experimental validated drug-target interactions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3