A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

Author:

Ma Mei12ORCID,Lei Xiujuan1ORCID,Zhang Yuchen1ORCID

Affiliation:

1. School of Computer Science, Shaanxi Normal University, Xi'an, China

2. School of Mathematics and Statistics, Qinghai Normal University, Qinghai, China

Abstract

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelli-gence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been re-viewed in this work. We have first summarized the drug, target, and disease-related mainstream public da-tasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suita-bility. We have then comprehensively investigated drug-related associations and introduced relevant computa-tional methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associa-tions. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable neg-ative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related as-sociations.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3