Image Segmentation under the Optimization Algorithm of Krill Swarm and Machine Learning

Author:

Geng Qiang12ORCID,Yan Huifeng3ORCID

Affiliation:

1. School of Big Data & Software Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China

2. Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing 401420, China

3. School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

This study aims to improve the efficiency and accuracy of image segmentation, and to compare and study traditional threshold-based image segmentation methods and machine learning model-based image segmentation methods. The krill herb optimization algorithm is combined with the traditional maximum between-class variance function to form a new graph segmentation algorithm. The pet dataset is used to train the algorithm model and build an image semantic segmentation system. The results show that when the traditional Ostu algorithm performs image single-threshold segmentation, the number of iterations is about 256. When double-threshold segmentation is performed, the number of iterations increases exponentially, and the execution time is about 2 s. The number of iterations of the improved Krill Herd algorithm in single-threshold segmentation is 6.95 times, respectively. The execution time for double-threshold segmentation is about 0.24 s. The number of iterations is only improved by a factor of 0.19. The average classification accuracy of the Unet network model and the SegNet network model is 86.3% and 91.9%, respectively. The average classification accuracy of the DC-Unet network model reaches 93.1%. This shows that the proposed fusion algorithm has high optimization efficiency and stronger practicability in multithreshold image segmentation. The DC-Unet network model can improve the image detail segmentation effect. The research provides a new idea for finding an efficient and accurate image segmentation method.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3