Modelling of Deformation Resistance with Big Data and Its Application in the Prediction of Rolling Force of Thick Plate

Author:

Zhang Shun Hu1ORCID,Che Li Zhi1ORCID,Liu Xin Ying1ORCID

Affiliation:

1. Shagang School of Iron and Steel, Soochow University, Suzhou, China

Abstract

The precision of traditional deformation resistance model is limited, which leads to the inaccuracy of the existing rolling force model. In this paper, the back propagation (BP) neural network model was established according to the industrial big data to accurately predict the deformation resistance. Then, a new rolling force model was established by using the BP neural network model. During the establishment of the neural network model, the data set of deformation resistance was established, which was calculated back from the actual rolling force data. Based on the data set after normalization, the BP neural network model of deformation resistance was established through the optimization of algorithm and network structure. It is shown that both the prediction accuracy of the neural network model on the training set and the test set are high, indicating that the generalization ability of the model is strong. The neural network model of the deformation resistance is compared with the theoretical one, and the maximum error is only 3.96%. Furthermore, by comparison with the traditional rolling force model, it is found that the prediction accuracy of the rolling force model imbedding with the present neural network model is improved obviously. The maximum error of the present rolling force model is just 3.86%. The research in this paper provides a new way to improve the prediction accuracy of rolling force model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3