Reduce Product Surface Quality Risks by Adjusting Processing Sequence: A Hot Rolling Scheduling Method

Author:

Jiang Tianru1ORCID,Zhang Nan1,Xie Yongyi2,Lv Zhimin3ORCID

Affiliation:

1. Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Automotive Intelligence and Control of China Co., Ltd., Beijing 100010, China

3. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The hot rolled strip is a basic industrial product whose surface quality is of utmost importance. The condition of hot rolling work rolls that have been worn for a long time is the key factor. However, the traditional scheduling method controls risks to the surface quality by setting fixed rolling length limits and penalty scores, ignoring the wear condition differences caused by various products. This paper addresses this limitation by reconstructing a hot rolling-scheduling model, after developing a model for pre-assessment of the risk to surface quality based on the Weibull failure function, the deformation resistance formula, and real production data from a rolling plant. Additionally, Ant Colony Optimization (referred to as ACO) is employed to implement the scheduling model. The simulation results of the experiments demonstrate that, compared to the original scheduling method, the proposed one significantly reduces the cumulative risk of surface defects on products. This highlights the efficacy of the proposed method in improving scheduling decisions and surface quality of hot rolled strips.

Funder

Fundamental Research Funds for the Central Universities, University of Science and Technology, Beijing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3