Specific Growth Rate Determines the Sensitivity ofEscherichia colito Lactic Acid Stress: Implications for Predictive Microbiology

Author:

Lindqvist Roland123ORCID,Barmark Gunilla24ORCID

Affiliation:

1. Division of Risk and Benefit Assessment, National Food Agency, 75126 Uppsala, Sweden

2. Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

3. Department of Microbiology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

4. Department of Forest Products, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

Abstract

This study tested the hypothesis that sensitivity ofEscherichia colito lactic acid at concentrations relevant for fermented sausages (pH 4.6, 150 mM lactic acid,aw=0.92, temperature = 20 or 27°C) increases with increasing growth rate. ForE. colistrain 683 cultured in TSB in chemostat or batch, subsequent inactivation rates when exposed to lactic acid stress increased with increasing growth rate at harvest. A linear relationship between growth rate at harvest and inactivation rate was found to describe both batch and chemostat cultures. The maximum difference in T90, the estimated times for a one-log reduction, was 10 hours between bacteria harvested during the first 3 hours of batch culture, that is, at different growth rates. A 10-hour difference in T90would correspond to measuring inactivation at 33°C or 45°C instead of 37°C based on relationships between temperature and inactivation. At similar harvest growth rates, inactivation rates were lower for bacteria cultured at 37°C than at 15–20°C. As demonstrated forE. coli683, culture conditions leading to variable growth rates may contribute to variable lactic acid inactivation rates. Findings emphasize the use and reporting of standardised culture conditions and can have implications for the interpretation of data when developing inactivation models.

Funder

Swedish Agricultural University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3