Affiliation:
1. Department of Navigation Engineering, PLA Naval University of Engineering, Wuhan 430033, China
2. Department of Operation and Planning, PLA Naval University of Engineering, Wuhan 430033, China
Abstract
Fiber optic gyroscope (FOG) inertial measurement unit (IMU) containing a three-orthogonal gyroscope and three-orthogonal accelerometer has been widely utilized in positioning and navigation of military and aerospace fields, due to its simple structure, small size, and high accuracy. However, noise such as temperature drift will reduce the accuracy of FOG, which will affect the resolution accuracy of IMU. In order to reduce the FOG drift and improve the navigation accuracy, a long short-term memory recurrent neural network (LSTM-RNN) model is established, and a real-time acquisition method of the temperature change rate based on moving average is proposed. In addition, for comparative analysis, backpropagation (BP) neural network model, CART-Bagging, classification and regression tree (CART) model, and online support vector machine regression (Online-SVR) model are established to filter FOG outputs. Numerical simulation based on field test data in the range of -20°C to 50°C is employed to verify the effectiveness and superiority of the LSTM-RNN model. The results indicate that the LSTM-RNN model has better compensation accuracy and stability, which is suitable for online compensation. This proposed solution can be applied in military and aerospace fields.
Funder
National Key Research and Development Plan
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献