An Efficient Neural Network Model for De-noising of MEMS-Based Inertial Data

Author:

El-Rabbany Ahmed,El-Diasty Mohammed

Abstract

Micro-Electro-Mechanical System (MEMS)-based inertial technology has recently evolved. It holds remarkable potential as the future technology for various navigation related applications. This is mainly due to the significant reduction in size, cost, and weight of MEMS sensors. A major drawback of low-cost MEMS-based inertial sensors, however, is that their output signals are contaminated by high-level noise. Unless the high frequency noise component is suppressed, optimizing the pre-filtering methodology cannot be achieved. This paper proposes a neural network-based de-noising model for MEMS-based inertial data. A modular, three-layer feedforward neural network trained using the back-propagation algorithm is used for this purpose. Simulated and real MEMS-based inertial data sets are used to validate the model. It is shown that the model is capable of reducing the noise of the Crossbow's AHRS300CA IMU data by over one order of magnitude without altering the stochastic nature of the original signal. This is of utmost importance in developing a generic stochastic model for MEMS-based inertial data. A comparison between the developed neural network model and the wavelet de-noising method is made to further validate the model. It is shown that achieving the same level of noise suppression with wavelet-based de-noising model changes the stochastic characteristics of original signal.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3