EPVNE: An Efficient Parallelizable Virtual Network Embedding Algorithm

Author:

Li Yuanzhen1ORCID,Zhang Yingyu1

Affiliation:

1. School of Computer Science, Liaocheng University, Liaocheng, Shandong 252059, China

Abstract

Virtual network embedding (VNE) problem is a key issue in network virtualization technology, and much attention has been paid to the virtual network embedding. However, very little research work focuses on parallelized virtual network embedding problems which assumes that the substrate infrastructure supports parallel computing and allows one virtual node to be mapped to multiple substrate nodes. Based on the work of Liang and Zhang, we extend the well-known VNE to parallelizable virtual network embedding (PVNE) in this paper. Furthermore, to the best of our knowledge, we give the first formulation of the PVNE problem. A new heuristic algorithm named efficient parallelizable virtual network embedding (EPVNE) is proposed to reduce the cost of embedding the VN request and increase the VN request acceptance ratio. EPVNE is a two-stage mapping algorithm, which first performs node mapping and then performs link mapping. In the node mapping phase, we present a simple and efficient virtual node and physical node sorting formula and perform the virtual node mapping in order. When mapping virtual nodes, we map virtual nodes to physical nodes that just meet the CPU requirements. Substrate nodes with more CPU resources will be retained for subsequent virtual network mapping requests. In the link mapping phase, Dijkstra’s algorithm is used to find a substrate path for each virtual link. Finally, simulations are carried out and simulation results show that our algorithm performs better than the existing heuristic algorithms.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Intent-based Framework for Vehicular Edge Computing;2023 IEEE International Conference on Pervasive Computing and Communications (PerCom);2023-03-13

2. Novel Node-Ranking Approach for SDN-Based Virtual Network Embedding;Mathematical Problems in Engineering;2020-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3