Novel Node-Ranking Approach for SDN-Based Virtual Network Embedding

Author:

Shi Chaowei1ORCID,Meng Xiangru1,Kang Qiaoyan1,Han Xiaoyang1

Affiliation:

1. College of Information and Navigation, Air Force Engineering University, Xi’an, Shaanxi 710077, China

Abstract

Network virtualization is considered as a key technology for the future network. The emergence of software-defined network (SDN) provides a platform for the research and development of network virtualization. One of the key challenges in network virtualization is virtual network embedding (VNE). Some of the previous VNE algorithms perform virtual node embedding, which combines the nodes’ resource attributes and local topology attributes by arithmetic operations. On the one hand, it is not easy to distinguish the topological differences between SN and VN only by simple topology metrics. On the other hand, it is easy to ignore the different weight impacts of different metrics using only arithmetic operations, which will lead to an unbalanced embedding solution. To deal with these issues, we propose a novel node-ranking approach based on topology-differentiating (VNE-NRTD) for SDN-based virtual network embedding. Owing to the topological difference between SN and VN, different node metrics are used to quantify the substrate nodes and virtual nodes, respectively. Then, the nodes are ranked using the modified set pair analysis (SPA) method to avoid the unbalanced embedding solution. On this basis, we introduce the global bandwidth of the network topology into node-ranking to further improve the efficiency of node embedding. The simulation results show that the VNE-NRTD algorithm proposed in this paper outperforms other latest heuristic algorithms in terms of the VNR acceptance ratio, long-term average R/C ratio, substrate node utilization, and substrate link utilization.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3