Affiliation:
1. College of Information Science and Technology, Taishan University, Taian 271000, Shandong, China
Abstract
With the advent of the era of big data and the rapid development of deep learning and other technologies, people can use complex neural network models to mine and extract key information in massive data with the support of powerful computing power. However, it also increases the complexity of heterogeneous network and greatly increases the difficulty of network maintenance and management. In order to solve the problem of network fault diagnosis, this paper first proposes an improved semisupervised inverse network fault diagnosis algorithm; the proposed algorithm effectively guarantees the convergence of generated against network model, makes full use of a large amount of trouble-free tag data, and obtains a good accuracy of fault diagnosis. Then, the diagnosis model is further optimized and the fault classification task is completed by the convolutional neural network, the discriminant function of the network is simplified, and the generation pair network is only responsible for generating fault samples. The simulation results also show that the fault diagnosis algorithm based on network generation and convolutional neural network achieves good fault diagnosis accuracy and saves the overhead of manually labeling a large number of data samples.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献