Research on Fault Diagnosis Model of Generative Adss Based on Improved Semisupervised Diagnosis Algorithm

Author:

Qian Yi1ORCID

Affiliation:

1. College of Information Science and Technology, Taishan University, Taian 271000, Shandong, China

Abstract

With the advent of the era of big data and the rapid development of deep learning and other technologies, people can use complex neural network models to mine and extract key information in massive data with the support of powerful computing power. However, it also increases the complexity of heterogeneous network and greatly increases the difficulty of network maintenance and management. In order to solve the problem of network fault diagnosis, this paper first proposes an improved semisupervised inverse network fault diagnosis algorithm; the proposed algorithm effectively guarantees the convergence of generated against network model, makes full use of a large amount of trouble-free tag data, and obtains a good accuracy of fault diagnosis. Then, the diagnosis model is further optimized and the fault classification task is completed by the convolutional neural network, the discriminant function of the network is simplified, and the generation pair network is only responsible for generating fault samples. The simulation results also show that the fault diagnosis algorithm based on network generation and convolutional neural network achieves good fault diagnosis accuracy and saves the overhead of manually labeling a large number of data samples.

Funder

Taishan University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3