Early Fault Diagnosis Model Design of Reciprocating Compressor Valve Based on Multiclass Support Vector Machine and Decision Tree

Author:

Yu Zhihong1,Zhang Bosi1ORCID,Hu Guangxia1,Chen Zhigang2

Affiliation:

1. Department of Security Engineering, China University of Labor Relations, Beijing, China

2. Institute of Mechanical and Electrical Engineering, China Architecture University, Beijing, China

Abstract

According to the character of frequent fault occurrence, difficult diagnosis of large reciprocating compressor valves, an early fault diagnosis model of reciprocating compressor valve based on multiclass support vector machine and decision tree is designed. A series of simulation experiments of the suction valve and exhaust valve on a large-scale reciprocating compressor experimental bench are made and the valve fault principle is analyzed. Using the advantages of fast and efficient decision tree classification and the prominent characteristics of support vector machine in small sample binary classification, a multivariate classification and recognition model is constructed. The typical characteristic parameters of gearbox vibration signal are extracted as the fault feature vector training model under different fault conditions, and the samples are tested. The experimental results show that the recognition effect of this method is significantly better than that of the neural network method in the case of small samples, and the recognition efficiency is improved more than that of the conventional multivariate support vector machine method which can be effectively applied to reciprocating compressor valve fault diagnosis.

Funder

China University of Labor Relations

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference27 articles.

1. Rotor vibration fault diagnosis technology based on support vector machine;Y. Ai;Journal of Shenyang Technology University,2010

2. A gear box fault diagnosis method based on support vector machine;D. Wu;Vibration, Testing and Diagnosis,2008

3. Intelligent fault diagnosis of photoelectric pod bearing based on multi-information fusion;C. Wang;Journal of Physics: Conference Series,2021

4. Digital twin in smart manufacturing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3