Affiliation:
1. Laboratoire de Dynamique des Machines et des Structures, UMR CNRS 5006, Institut National des Sciences Appliquées de Lyon, Bâtiment Jean d’Alembert, 18, rue des Sciences, 69621 VILLEURBANNE Cedex, France
Abstract
The benefits of angular sampling when measuring various signals in rotating machines are presented and discussed herein. The results are extracted from studies on transmission error measurements with optical encoders in the field of power transmissions and can be broadened to include phase difference measurements, such as torsional vibrations, and applied to control, monitoring and measurement in rotating machines with discrete geometry. The main conclusions are primarily that the use of angular sampling enables the exact location of harmonics and, consequently, the obtaining of spectral amplitude components with precision. This is always true even if the resolution of encoders is not directly related to the studied discrete geometry. It then becomes possible to compare these harmonics under different operating conditions, especially when speed varies, without changing any parameters in spectral analysis (window length, spectral resolution, etc.). Moreover, classical techniques of improving signal to noise ratio by averaging become fully efficient in the detection of defective elements. This study has been made possible thanks to the technique of transmission error measurement with optical encoders that allows the comparison of sampling procedures, based on the same raw data.The intensive use of such transducers and the development of an original transmission error measurement technique lead to advocate the use of angular sampling in experimental measurements in rotating machines with discrete geometry.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献