Classifying, Predicting, and Reducing Strategies of the Mesh Excitations of Gear Whine Noise: A Survey

Author:

Sun Menglei1,Lu Chihua123,Liu Zhien12ORCID,Sun Yi1,Chen Hao1,Shen Cunrui1

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China

Abstract

Gear whine noise has attracted increasing attention from researchers in both the academe and the industry over the past two decades. The wide range of research topics demonstrates that there is a huge technical challenge in understanding the source-path-receiver mechanisms deeply and predicting the gear whine noise precisely. Thoroughly understanding the sources of gear whine noise is the first step to solving this issue. In this paper, the authors summarize a certain number of published articles regarding the sources of gear whine noise. The excitations of gear whine noise are classified into three groups: transmission error along the line of action direction, frictional excitations along the off-line of action direction, and shuttling excitation along the axial direction. The mechanisms, characteristics, predicting approaches, measuring methods, and decreasing strategies for these excitations are summarized. Current research characteristics and future research recommendations are presented at the end.

Funder

National Key Research and Development Program-Research on Application of Vibration, Noise, and Post-Processing of Medium Power Agricultural Diesel Engine

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3