IL-2 Flexible Loops Might Play a Role in IL-2 Interaction with the High-Affinity IL-2 Receptor: A Molecular Dynamics (MD) Study

Author:

L. Alaofi Ahmed1ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

Abstract

The clinical use of high-dose IL-2 in cancer immunotherapy faces several drawbacks such as toxicity and unfavorable pharmacokinetic profile. These drawbacks can be avoided by inhibiting IL-2 interaction with the CD25 subunit, which is a component of the high-affinity IL-2 receptor (IL-2Rαβγ). Several studies showed mutations of potential IL-2 residues such as R38, F42, Y45, and Y72 would produce IL-2 that is CD25-independent. In essence, structural comparison between wild-type (WT) IL-2 and CD25-independent IL-2 can be very insightful to assess the role of IL-2 flexibility and conformation in the IL-2 receptor interactions. Here, we investigated the flexibility loops and conformation of IL-2m (F24A, Y45A, and L72G), which is known to be CD25-independent, and IL-2m2 (F42Y and L72R) mutants along with WT IL-2 using MD simulations. Despite residue mutations, both IL-2m and IL-2m2 showed comparable conformational compactness and better stability than WT IL-2. Interestingly, IL-2m and IL-2m2 mutants showed rigid BC and CD loops in comparison to WT IL-2 . Also, the AB loop conformation of IL-2m was a bent structure compared to the WT IL-2 and IL-2m2. Principal component analysis (PCA) and free-energy landscape results suggested IL-2m and IL-2m2 have stable conformations compared to the WT IL-2. Therefore, these mutation sites of IL-2 produced stable and rigid loops that might prevent IL-2 from binding to the CD25 subunit. Our results can help to assess IL-2 flexibility loops to design new CD25-independent IL-2 mutants without compromising the IL-2 structure.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3