Optimization Research on Thermal Error Compensation of FOG in Deep Mining Using Uniform Mixed-Data Design Method

Author:

Liu Yimin12ORCID,Wang Chenghu1,Wang Jie2,Ji Weifeng23

Affiliation:

1. Key Lab of Crustal Dynamics, Institute of Crustal Dynamics, CEA, Beijing 100085, China

2. School of Manufacturing Science & Engineering, Sichuan University, Sichuan 610065, China

3. The Institute of Exploration Technology of CAGS, Sichuan 611730, China

Abstract

Suffered from the unsatisfied time consumption of thermal error compensation, this paper aims to realize a faster and more accurate fibre optic gyroscope (FOG) thermal error compensation plan, so that the deep-hole inclinometer using in mining which is based on FOG will make accurate measurement under external thermal field. Using uniform mixed-data design method, it is learned that the temperature compensation experiments only consumed 1/9 the time required for traditional method within the working condition range of 0~120°C. Suffice it to say that our method can markedly enhance the efficiency of FOG temperature compensation. To this end, the finite-element method (FEM) was also applied to explore the thermal conductivity and simulate the complex boundary conditions of the FOG. Then, the Shupe error of the FOG was calculated and used to derive the FOG error compensation formula, and the factors and their levels affecting the Shupe error in thermal field were considered in error compensation experiments. After that, the optimal design of FOG thermal error compensation experiments was created by FOG error compensation formula and uniform mixed-data design table, and this plan significantly reduced the number of experiments compared to before. Finally, the design was compared with the full-scale design and orthogonal design to verify its accuracy and efficiency. The comparison shows that the proposed method can markedly enhance the efficiency of FOG error compensation and elevate the measuring accuracy of FOG. This paper innovatively applies the uniform mixed-data design method to the field of FOG measurement, and this research offers new insights into the error compensation optimization of FOG measurement.

Funder

National Key Scientific Instrument and Equipment Development Project of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3