Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor

Author:

Cao Yin,Xu Wenyuan1,Lin Bo2,Zhu Yuang,Meng Fanchao,Zhao Xiaoting,Ding Jinmin,Lou Shuqin3ORCID,Wang Xin3,He Jingwen,Sheng Xinzhi,Liang ShengORCID

Affiliation:

1. Chongqing Zixingzhe Technology Co., Ltd.

2. China Academy of Electronics and Information Technology

3. Beijing Jiaotong University

Abstract

We present an artificial intelligence compensation method for temperature error of a fiber optic gyroscope (FOG). The difference from the existing methods is that the compensation model finally determined by this method only uses the FOG’s data to complete the regression prediction of the temperature error and eliminate the dependency on the temperature sensor. In the experimental stage, the proposed method performs temperature experiments with three varying trends of temperature heating, holding, and cooling and obtains sufficient output data sets of the FOG. Taking the output time series of the FOG as the input sample and based on the long short-term memory network of machine learning, the training, validation, and test of the model are completed. From the two perspectives of network learning ability and the improvement degree of the FOG’s performance, four indicators, including root mean square error, error cumulative distribution function, FOG bias stability, and Allan variance analysis are selected to evaluate the performance of the compensation model comprehensively. Compared with the existing methods using temperature information for prediction and compensation, the results show that the error compensation method without temperature information proposed can effectively improve the accuracy of the FOG and reduce the complexity of the compensation system. The work can also provide technical references for error compensation of other sensors.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3