An Algorithm for Detecting Collision Risk between Trucks and Pedestrians in the Connected Environment

Author:

Son Seung-oh1ORCID,Park Juneyoung12ORCID,Oh Cheol12ORCID,Yeom Chunho3ORCID

Affiliation:

1. Department of Smart City Engineering, Hanyang University, 15588 Ansan, Republic of Korea

2. Department of Transportation and Logistics Engineering, Hanyang University, 15588 Ansan, Republic of Korea

3. International School of Urban Sciences, University of Seoul, 02592 Seoul, Republic of Korea

Abstract

This study develops an algorithm to detect the risk of collision between trucks (i.e., yard tractors) and pedestrians (i.e., workers) in the connected environment of the port. The algorithm consists of linear regression-based movable coordinate predictions and vertical distance and angle judgments considering the moving characteristics of objects. Time-to-collision for port workers (TTCP) is developed to reflect the characteristics of the port using the predictive coordinates. This study assumes the connected environment in which yard tractors and workers can share coordinates of each object in real time using the Internet of Things (IoT) network. By utilizing microtraffic simulations, a port network is implemented, and the algorithm is verified using data from simulated workers and yard trucks in the connected environment. The risk detection algorithm is validated using confusion matrix. Validation results show that the true-positive rate (TPR) is 61.5∼98.0%, the false-positive rate (FPR) is 79.6∼85.9%, and the accuracy is 72.2∼88.8%. This result implies that the metric scores improve as the data collection cycle increases. This is expected to be useful for sustainable transportation industry sites, particularly IoT-based safety management plans, designed to ensure the safety of pedestrians from crash risk by heavy vehicles (such as yard tractors).

Funder

Ministry of Oceans and Fisheries

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3