The Pressure Buildup Well Test Analysis considering Stress Sensitivity Effect for Deepwater Composite Gas Reservoir with High Temperature and Pressure

Author:

Gao Yihua1ORCID,Jiang Ruizhong2,Xu Xiangdong3,Sun Zhaobo3,Yuan Zhiwang1ORCID,Ma Kang1,Jiang Bin1,Kang Botao1,Chen Guoning1,Li Chenxi1

Affiliation:

1. CNOOC Research Institute Co., Ltd., Beijing 100028, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. CNOOC International Co., Ltd., Beijing 100027, China

Abstract

Some deepwater gas reservoirs with high temperature and pressure have obvious stress sensitivity effect resulting in difficulty in well test interpretations. The influence of stress sensitivity effect on the pressure drawdown well test is discussed in many papers. However, the influence on the pressure buildup well test is barely discussed. For practices in oilfields, the quality of pressure data from the drawdown stage of well test is poor due to the influence of production fluctuation. Thus, the pressure data from the buildup stage is used for well test interpretations in most cases. In order to analyze the influence of stress sensitivity effect on the pressure buildup well test, this paper establishes a composite gas reservoir pressure buildup well test model considering the stress sensitivity effect and the hysteresis effect. Numerical solutions to both pressure drawdown and buildup well test models are obtained by the numerical differentiation method. The numerical solutions are verified by comparing with analytical solutions and the homogeneous gas reservoir well test solution. Then, the differences between pressure drawdown and buildup well test curves considering the stress sensitivity effect are compared. The parameter sensitivity analysis is conducted. Compared with the conventional well test curve, the pressure derivative curve of pressure drawdown well test considering the stress sensitivity effect deviates upward from the 0.5 horizontal line at the inner zone radial flow stage, while it deviates upward from the M/2 (mobility ratio/2) horizontal line at the outer zone radial flow stage. However, for the pressure buildup well test curve considering the stress sensitivity effect, the pressure derivative curve gradually descends to the 0.5 horizontal line at the inner zone radial flow stage, while it descends to the M/2 (mobility ratio/2) horizontal line at the outer zone radial flow stage. The pressure derivative curve of pressure buildup well test considering the hysteresis effect is higher than the curve without considering the hysteresis effect, because the permeability cannot be recovered to its original value in the buildup stage after considering the hysteresis effect. Meanwhile, skin factor and mobility ratio have different effects on pressure drawdown and buildup well test curves. Based on the model, a well test interpretation case from a deepwater gas reservoir with high temperature and pressure is studied. The result indicates that the accuracy of the interpretation is improved after considering the stress sensitivity effect, and the skin factor will be exaggerated without considering the stress sensitivity effect.

Funder

National Science and Technology Major Projects

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3