Affiliation:
1. Faculty of Earth Science and Technology, Kim Chaek University of Technology, Pyongyang 999093, Democratic People’s Republic of Korea
2. International Technology Cooperation Center, Kim Chaek University of Technology, Pyongyang 999093, Democratic People’s Republic of Korea
Abstract
Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture, which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of PPD is analyzed. This work may be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.
Funder
National Science and Technical Development Foundation of DPR Korea
Subject
General Earth and Planetary Sciences