Effects of the Air Inlet Angle on the Combustion and Ablation Environment of a Hybrid Powder-Solid Ramjet

Author:

Wang Jinjin1,Wen Yihao1ORCID,Zha Bailin1,Xu Zhigao1,Zhang Tianhao2

Affiliation:

1. Rocket Force University of Engineering, Xi’an 710025, China

2. Key Laboratory of Non-Destructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang, 330063 Jiangxi, China

Abstract

A hybrid powder-solid ramjet (HPSR) that combined the advantages of a solid rocket ramjet (SRJ) and a powder ramjet engine was investigated in this research. To improve the combustion efficiency and optimize the inner wall thermal protection of the afterburner, the effects of the air inlet angle on the combustion and wall ablation environment were studied. The standard k - ε model, the eddy-dissipation model (EDM), and the boron particle ignition and combustion model were adopted to simulate the two-phase flow in the afterburners with different air inlet angles (45°, 60°, 75°, and 90°). The results showed that the global flow field and the distribution of the vortexes in the afterburner that had a significant influence on the ablation environment of the inner wall and the combustion efficiency were determined by the impact effect and the squeezing effect of the ram air on the primary fuel gas, which was affected by the air inlet angle. As the air inlet angle increased, the total combustion efficiency of the four cases first increased and then decreased, reaching 80.38%, 81.64%, 84.34%, and 83.26% for angles of 45°, 60°, 75°, and 90°, respectively. At the same time, the inner wall ablation became more severe because both the erosion effect of the condensed phase particles and the gas-flow scouring effect were enhanced, and a large temperature gradient was generated on the inner wall. The study results can provide a reference for designing the air inlet angle of an HPSR.

Funder

Key Laboratory Foundation of Shaanxi Province

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3