Identification of circRNA Expression Profiles in BMSCs from Glucocorticoid-Induced Osteoporosis Model

Author:

Chen Zhipeng12,Lin Wei13,Zhao Shengli13,Mo Xiaoyi13,Wen Zhenxing13,Cheung Wing Hoi4,Fu Dan5,Chen Bailing13ORCID

Affiliation:

1. Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

2. Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

3. Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

4. Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China

5. Department of Orthopedics, Kiang Wu Hospital, Macau, China

Abstract

Background. Circular RNAs (circRNAs) contribute to the regulation of many diseases. However, little is known about the role of circRNAs in the development of glucocorticoid-induced osteoporosis (GIOP). The present study is aimed at systematically characterizing the circRNA expression profiles in GIOP and predict the potential functions of the associated regulatory networks. Methods. A small animal GIOP model was developed in Sprague-Dawley rats given daily intraperitoneal doses of the synthetic glucocorticoid dexamethasone. Micro-CT and bone histomorphometry were performed to characterize the bone loss. Alizarin red S (ARS) staining and alkaline phosphatase (ALP) activity were assessed to determine the osteogenic differentiation potential of BMSCs. RNA sequencing was performed to identify differentially expressed circRNAs in BMSCs between the GIOP and normal groups, which were validated by qRT-PCR. siRNA interference experiments were used to demonstrate their function. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the functions of differentially expressed circRNAs. The microRNA (miRNA) targets of the circRNAs and circRNA-miRNA interactions were predicted. Results. Micro-CT and bone histomorphometry confirmed the rat GIOP model. Both ARS intensity and ALP activity were decreased in GIOP BMSCs. Seventeen circRNAs were identified by fold change = 2.0 , p < 0.05 , and false discovery rate < 0.05 , of which 7 were upregulated and 10 were downregulated. The qRT-PCR results of the selected circRNAs were consistent with the RNA-seq results and showed that circARSB and circAKT3 were significantly upregulated, while circPTEN and circTRPM7 were downregulated in the GIOP group. Further functional experiments found that downregulation of circARSB and circPTEN expression resulted in a corresponding change in osteogenic differentiation, suggesting that circARSB negatively, while circPTEN positively, regulates BMSC osteogenic differentiation. Analysis of circRNA-targeted miRNAs predicted that miR-135a-5p was associated with circARSB and circAKT3, and miR-881-3p was associated with circPTEN and circTRPM7. Furthermore, the signalling pathways associated with these differentially expressed circRNAs were predicted. Conclusions. The present study identified circARSB, circAKT3, circPTEN, and circTRPM7 as being associated with osteogenic differentiation during GIOP through a circRNA-targeted miRNA-mRNA axis, which might provide insight into the pathophysiological mechanism of GIOP.

Funder

Science and Technology Program of Guangzhou, China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3