Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates

Author:

Xia Baizhan1ORCID,Luo Hao1,Shi Shiguang1

Affiliation:

1. School of Computer, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China

Abstract

Defect recognition plays an important part of panel inspection, and most of the current manual inspection methods are used, but the recognition efficiency and recognition accuracy are low. The Fast-Convolutional Neural Network (Faster R-CNN) algorithm is improved, and a surface defect detection algorithm based on the improved Faster R-CNN is proposed. Firstly, the algorithm improves the bilateral filtering algorithm to smooth the image texture background. Subsequently, a feature pyramid network with a shape-variable convolutional ResNet50 network can be applied to acquire defect semantic feature maps to improve the network’s ability to express the features of multiscale defects while solving the difficulty problem of many types of defects and variable shapes. To obtain more accurate defect localization information, the algorithm in this paper uses the Region of Interest Align (ROI Align) algorithm instead of the crude Region of Interest Pooling (ROI Pooling) algorithm. Then, an improved attention region recommendation network is used to improve the focus of the model on plate defects and suppress the features of complex background. Finally, a K-means algorithm is added to cluster the defect data to derive anchor frames that are better adapted to the plate defects. In this paper, a dataset containing 3216 images of surface defects of plate metal is made by acquiring surface defect images from the production site of the plate metal factory, which mainly include various defect types. This dataset is used to train and test the algorithm model of this paper, and the results of detection accuracy and detection speed are compared with those of other algorithms, which prove that the algorithm of this paper can achieve real-time detection of plate defects with high detection accuracy.

Funder

Zhongshan Social Welfare and Basic Research

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3