Affiliation:
1. School of Computer, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
Abstract
Defect recognition plays an important part of panel inspection, and most of the current manual inspection methods are used, but the recognition efficiency and recognition accuracy are low. The Fast-Convolutional Neural Network (Faster R-CNN) algorithm is improved, and a surface defect detection algorithm based on the improved Faster R-CNN is proposed. Firstly, the algorithm improves the bilateral filtering algorithm to smooth the image texture background. Subsequently, a feature pyramid network with a shape-variable convolutional ResNet50 network can be applied to acquire defect semantic feature maps to improve the network’s ability to express the features of multiscale defects while solving the difficulty problem of many types of defects and variable shapes. To obtain more accurate defect localization information, the algorithm in this paper uses the Region of Interest Align (ROI Align) algorithm instead of the crude Region of Interest Pooling (ROI Pooling) algorithm. Then, an improved attention region recommendation network is used to improve the focus of the model on plate defects and suppress the features of complex background. Finally, a K-means algorithm is added to cluster the defect data to derive anchor frames that are better adapted to the plate defects. In this paper, a dataset containing 3216 images of surface defects of plate metal is made by acquiring surface defect images from the production site of the plate metal factory, which mainly include various defect types. This dataset is used to train and test the algorithm model of this paper, and the results of detection accuracy and detection speed are compared with those of other algorithms, which prove that the algorithm of this paper can achieve real-time detection of plate defects with high detection accuracy.
Funder
Zhongshan Social Welfare and Basic Research
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献