Pose Estimation of a Noncooperative Target Based on Monocular Visual SLAM

Author:

Lei Ting1ORCID,Liu Xiao-Feng1ORCID,Cai Guo-Ping1ORCID,Liu Yun-Meng2,Liu Pan2

Affiliation:

1. Department of Engineering Mechanics, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China

2. Shanghai Institute of Technical Physics of the Chinese Academy of Science, Shanghai 200083, China

Abstract

This paper estimates the pose of a noncooperative space target utilizing a direct method of monocular visual simultaneous location and mapping (SLAM). A Large Scale Direct SLAM (LSD-SLAM) algorithm for pose estimation based on photometric residual of pixel intensities is provided to overcome the limitation of existing feature-based on-orbit pose estimation methods. Firstly, new sequence images of the on-orbit target are continuously inputted, and the pose of each current frame is calculated according to minimizing the photometric residual of pixel intensities. Secondly, frames are distinguished as keyframes or normal frames according to the pose relationship, and these frames are used to optimize the local map points. After that, the optimized local map points are added to the back-end map. Finally, the poses of keyframes are further enumerated and optimized in the back-end thread based on the map points and the photometric residual between the keyframes. Numerical simulations and experiments are carried out to prove the validity of the proposed algorithm, and the results elucidate the effectiveness of the algorithm in estimating the pose of the noncooperative target.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3