Monocular Vision-Based Pose Determination in Close Proximity for Low Impact Docking

Author:

Liu ,Xu ,Zhu ,Zhao

Abstract

Pose determination in close proximity is critical for space missions in which monocular vision is one of the most promising solutions. Although numerous approaches such as using artificial beacons or specific shapes on spacecrafts have proved to be effective, the high individuation and the large time delay limit their use in low impact docking. This paper proposes a unified framework to determinate the relative pose between two docking mechanisms by treating their guide petals as measurement objects. Fusing the pose information of one docking mechanism to simplify image processing and creating an intermediate coordinate system to solve the perspective-n-point problem greatly improve the real-time performance and the robustness of the method. Experimental results show that the position measurement error is within 3.7 mm, while the rotation error around docking direction is less than 0.16°, corresponding to a measurement time reduction of 85%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. A review of space robotics technologies for on-orbit servicing

2. Near Earth asteroid rendezvous: Mission summary;Cheng;Asteroids III,2002

3. Active debris removal: Recent progress and current trends

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3