Development of Sustainable Vegan Pea Protein-Zinc Complex: Characterization, In Vitro Cellular Mineral Uptake, and Application in Functional Biscuit Production

Author:

Jindal Aprjita1,Patil Nikhil Dnyaneshwar1ORCID,Bains Aarti2,Sharma Minaxi3ORCID,Kumar Anil4,Ali Nemat5ORCID,Chawla Prince1ORCID,Sridhar Kandi6ORCID

Affiliation:

1. Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India

2. Department of Microbiology, Lovely Professional University, Phagwara 144411, India

3. Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India

4. Department of Food Science Technology and Processing, Amity University, Mohali 140306, India

5. Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

6. Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India

Abstract

This study aimed to investigate the potential of pea protein concentrate (PPC) to form protein-mineral composites, with a specific focus on its zinc- (Zn-) binding capabilities. In addition, the physical and functional properties of PPC were evaluated. PPC, a potential protein source, was found to possess lipophilic properties, suggesting its suitability for various applications in food production. The investigation involved a comprehensive characterization of pea protein concentrate-zinc complex (PPC-Zn) composites, utilizing various analytical techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, particle size analysis, zeta potential measurement, and thermogravimetric analysis. The findings of this study indicated that the protein content of PPC-Zn (79.02 ± 1.33%) insignificantly increased as compared to PPC (78.86 ± 1.16%). Furthermore, PPC demonstrated improved functional properties, including increased protein solubility (2.55%), enhanced water-holding (13.09%) and oil-holding capacity (11.17%), and improved foaming capacity and stability (2.08% and 6.07%, respectively). These improvements in functional properties were likely attributed to the unique surface structure observed in SEM micrographs. The research also highlighted the maximum binding capacity of PPC for zinc, which was observed at concentrations of 5 mM (95.35 ± 1.86%). This binding of zinc ions to PPC induced changes in the characteristics and internal structures of the protein concentrate. Notably, the presence of functional groups such as -COOH, -OH, and –NH2 in PPC suggested their involvement in coordinating with zinc ions to form PPC-Zn composites. This investigation demonstrated a significant increase (2.26%) in the mineral bioavailability of PPC-Zn. Additionally, the cellular uptake, retention, and transport of PPC-Zn were improved by 9.79%, 7.84%, and 9.51%, respectively. Fortified biscuits (B2) demonstrated enhanced cellular uptake (2.79%), retention (4.84%), and transport (3.51%) compared with control biscuits. Fortified biscuits (B2) had higher microbial counts (total plate count is 3.57 ± 0.03 and the yeast-mold count is 3.96 ± 0.07 cfu/g) than control biscuits (B1) (total plate count is 2.49 ± 0.13 and the yeast-mold count is 3.44 ± 0.11 cfu/g) at the end of storage, and there is no difference in sensory evaluation between the control and fortified biscuits. Furthermore, the key findings indicated that PPC could serve as a promising carrier for mineral supplements, binding with zinc effectively.

Funder

King Saud University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3