A Top-Down Clustering and Cluster-Tree-Based Routing Scheme for Wireless Sensor Networks

Author:

Bandara H. M. N. Dilum1,Jayasumana Anura P.1,Illangasekare Tissa H.2

Affiliation:

1. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA

2. Division of Environmental Science and Engineering, Colorado School of Mines, Golden, CO 80401, USA

Abstract

Cluster-based organization of large sensor networks is the basis for many techniques aimed at enhancing power conservation and network management. A backbone network in the form of a cluster tree further enhances routing, broadcasting, and in-network processing. We propose a configurable top-down cluster and cluster-tree formation algorithm, a cluster-tree self-optimization phase, a hierarchical cluster addressing scheme, and a routing scheme. Such self-organization makes it possible to effectively deliver messages to a sink as well as within the network. For example, a circular sensor field with a sink in the center can establish cross-links and circular-paths within the cluster tree to deliver messages through shorter routes while reducing hotspots and consequently increasing network lifetime. Cluster and cluster-tree formation algorithm is independent of physical topology, and does not require a priori neighborhood information, location awareness, or time synchronization. Algorithm parameters allow for formation of cluster trees with desirable properties such as controlled breadth/depth, uniform cluster size, and circular clusters. Characteristics of clusters, cluster tree, and routing are used to demonstrate the effectiveness of the schemes over existing techniques.

Funder

Environmental Sciences Division

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3