Hierarchical Hexagonal Clustering and Indexing

Author:

Uher VojtěchORCID,Gajdoš Petr,Snášel Václav,Lai Yu-ChiORCID,Radecký Michal

Abstract

Space-filling curves (SFCs) represent an efficient and straightforward method for sparse-space indexing to transform an n-dimensional space into a one-dimensional representation. This is often applied for multidimensional point indexing which brings a better perspective for data analysis, visualization and queries. SFCs are involved in many areas such as big data analysis and visualization, image decomposition, computer graphics and geographic information systems (GISs). The indexing methods subdivide the space into logic clusters of close points and they differ in various parameters including the cluster order, the distance metrics, and the pattern shape. Beside the simple and highly preferred triangular and square uniform grids, the hexagonal uniform grids have gained high interest especially in areas such as GISs, image processing and data visualization for the uniform distance between cells and high effectiveness of circle coverage. While the linearization of hexagons is an obvious approach for memory representation, it seems there is no hexagonal SFC indexing method generally used in practice. The main limitation of hexagons lies in lacking infinite decomposition into sub-hexagons and similarity of tiles on different levels of hierarchy. Our research aims at defining a fast and robust hexagonal SFC method. The Gosper fractal is utilized to preserve the benefits of hexagonal grids and to efficiently and hierarchically linearize points in a hexagonal grid while solving the non-convex shape and recursive transformation issues of the fractal. A comparison to other SFCs and grids is conducted to verify the robustness and effectiveness of our hexagonal method.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference59 articles.

1. Space-Filling Curves: An Introduction with Applications in Scientific Computing;Bader,2012

2. Using Space-Filling Curves for Multi-dimensional Indexing;Lawder,2000

3. A new range query algorithm for Universal B-trees

4. Fast BVH Construction on GPUs

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3