Affiliation:
1. College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, China
2. College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
Abstract
Rapeseed (Brassica napus L.) is a nutritious vegetable, while cadmium (Cd) pollution threatens the growth, productivity, and food security of rapeseed. By studying the effects of iminodisuccinic acid (IDS), an easily biodegradable and environmental friendly chelating agent, on Cd distribution at the organ and cellular level, we found IDS promoted dry matter accumulation of rapeseed and increased the contents of photosynthetic pigment in leaves. Inhibited root-shoot Cd transport resulted in higher activity of antioxidant enzymes and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation in leaves, which indicated that IDS contributed to alleviating Cd-caused oxidative damage in leaf cells. Additionally, IDS increased Cd subcellular distribution in cell wall (CW), especially in covalently bound pectin (CSP), and relieved Cd toxicity in organelle of leaves. IDS also enhanced demethylation of CSP. The Cd content in CSP, demethylation degree, and pectin methylesterase activity of CSP increased by 37.95%, 13.34%, and 13.16%, respectively, while IDS did not change the contents of different CW components. The improved Cd fixation in leaf CW was mainly attributed to enhance demethylation of covalently bound pectin (CSP) and Cd chelation with CSP.
Funder
Scientific research project of Xuchang company of Henan Tobacco Company
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献