USPF: Underwater Shrewd Packet Flooding Mechanism through Surrogate Holding Time

Author:

Ashraf Shahzad1ORCID,Gao Mingsheng1ORCID,Mingchen Zheng2,Ahmed Tauqeer1,Raza Asif3,Naeem Hamad4ORCID

Affiliation:

1. College of Internet of Things Engineering, Hohai University, Changzhou, Jiangsu, China

2. Department of Computer Science, Hohai University, Changzhou, China

3. Department of Automation, Shanghai Jiao Tong University, Shanghai, China

4. College of Computer Science, Neijiang Normal University, Neijiang, China

Abstract

The selection of optimal relay node ever remains a stern challenge for underwater routing. Due to a rigid and uncouth underwater environment, the acoustic channel faces inevitable masses that tarnish the transmission cycle. None of the protocols can cover all routing issues; therefore, designing underwater routing protocol demands a cognitive coverage that cannot be accomplished without meticulous research. An angle-based shrewd technique is being adopted to improve the data packet delivery, as well as revitalize the network lifespan. From source to destination, one complete cycle comprises three phases indeed; in the first phase, the eligibility of data packet belonging to the same transmission zone is litigated by Forwarder Hop Angle (FHA) and Counterpart Hop Angle (CHA). If FHA value is equal or greater than CHA, it presages that the generated packet belongs to the same transmission zone; otherwise, it portends that packet is maverick from other sectors. The second phase picks out the best relay node by computing a three-state link quality with prefix values using the Additive-Rise and Additive-Fall method. Finally, the third phase renders a decisive solution regarding exorbitant overhead fistula; a packet holding time is contemplated to prevent the packet loss probability. Simulation results using NS2 have been analyzed, regarding packet delivery ratio, packet error rate, communication overhead, and end-to-end delay. Comparing to HHVBF and GEDAR, USPF indeed has outperformed, leading into the evidence of applicability’s favor.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3