Distinguish the Value of the Benign Nevus and Melanomas Using Machine Learning: A Meta-Analysis and Systematic Review

Author:

Li Suli1,Chu Yihang2,Wang Ying1,Wang Yantong3,Hu Shipeng2,Wu Xiangye2,Qi Xinwei1ORCID

Affiliation:

1. First Affiliated Hospital of Xinjiang Medical University, China

2. Central South University of Forestry and Technology, China

3. CHD University, China

Abstract

Background. Melanomas, the most common human malignancy, are primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy, and histopathological examination. We aimed to systematically review the performance and quality of machine learning-based methods in distinguishing melanoma and benign nevus in the relevant literature. Method. Four databases (Web of Science, PubMed, Embase, and the Cochrane library) were searched to retrieve the relevant studies published until March 26, 2022. The Predictive model Deviation Risk Assessment tool (PROBAST) was used to assess the deviation risk of opposing law. Result. This systematic review included thirty researches with 114007 subjects and 71 machine learning models. The convolutional neural network was the main machine learning method. The pooled sensitivity was 85% (95% CI 82–87%), the specificity was 86% (82–88%), and the C -index was 0.87 (0.84–0.90). Conclusion. The findings of our study showed that ML algorithms had high sensitivity and specificity for distinguishing between melanoma and benign nevi. This suggests that state-of-the-art ML-based algorithms for distinguishing melanoma from benign nevi may be ready for clinical use. However, a large proportion of the earlier published studies had methodological flaws, such as lack of external validation and lack of clinician comparisons. The results of these studies should be interpreted with caution.

Funder

Special Funds for the Development of Local Science and Technology from Central Government

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3