Histological interpretation of spitzoid tumours: an extensive machine learning‐based concordance analysis for improving decision making

Author:

Mosquera‐Zamudio Andrés12ORCID,Launet Laëtitia3,Colomer Adrián34,Wiedemeyer Katharina5,López‐Takegami Juan C6,Palma Luis F6,Undersrud Erling7,Janssen Emilius78,Brenn Thomas5ORCID,Naranjo Valery3,Monteagudo Carlos12ORCID

Affiliation:

1. Universitat de València Valencia Spain

2. INCLIVA, Instituto de Investigación Sanitaria Valencia Spain

3. Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN‐tech, Universitat Politècnica de València Valencia Spain

4. valgrAI: Valencian Graduate School and Research Network of Artificial Intelligence Valencia Spain

5. Department of Pathology and Laboratory Medicine Cumming School of Medicine, University of Calgary Calgary AB Canada

6. Grupo de investigación IMPAC Fundación Universitaria Sanitas Bogotá Colombia

7. Department of Pathology Stavanger University Hospital Stavanger Norway

8. Department of Chemistry, Bioscience and Environmental Engineering University of Stavanger Stavanger Norway

Abstract

The histopathological classification of melanocytic tumours with spitzoid features remains a challenging task. We confront the complexities involved in the histological classification of these tumours by proposing machine learning (ML) algorithms that objectively categorise the most relevant features in order of importance. The data set comprises 122 tumours (39 benign, 44 atypical and 39 malignant) from four different countries. BRAF and NRAS mutation status was evaluated in 51. Analysis of variance score was performed to rank 22 clinicopathological variables. The Gaussian naive Bayes algorithm achieved in distinguishing Spitz naevus from malignant spitzoid tumours with an accuracy of 0.95 and kappa score of 0.87, utilising the 12 most important variables. For benign versus non‐benign Spitz tumours, the test reached a kappa score of 0.88 using the 13 highest‐scored features. Furthermore, for the atypical Spitz tumours (AST) versus Spitz melanoma comparison, the logistic regression algorithm achieved a kappa value of 0.66 and an accuracy rate of 0.85. When the three categories were compared most AST were classified as melanoma, because of the similarities on histological features between the two groups. Our results show promise in supporting the histological classification of these tumours in clinical practice, and provide valuable insight into the use of ML to improve the accuracy and objectivity of this process while minimising interobserver variability. These proposed algorithms represent a potential solution to the lack of a clear threshold for the Spitz/spitzoid tumour classification, and its high accuracy supports its usefulness as a helpful tool to improve diagnostic decision‐making.

Funder

European Regional Development Fund

Universitat Politècnica de València

Generalitat Valenciana

Instituto de Salud Carlos III

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3