Affiliation:
1. Northwestern Polytechnical University, Xi’an, China
2. Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
Abstract
Model predictive control (MPC) is a powerful tool for the control of permanent magnet synchronous motors. However, conventional MPC permits using a single voltage vector during one control interval. This results in higher current distortions and large torque ripples. Sensitivity to control parameters is another issue associated with conventional MPC. The duty cycle suggests using an active vector and a null vector during one sampling interval. The method needs excessive computational and prediction effort. Furthermore, a necessary zero vector as the second vector might not give the optimal results. To overcome the problems of computational burden, this paper proposes that a reference voltage vector can be calculated and used to determine the voltage vector to be used for the next interval. This reduces the computational effort to a minimum. Furthermore, it is proposed that the second vector can either be active or null. To overcome the problem of parameter dependence, an electromotive force is calculated on basis of previous values. Simulations have been carried out to verify the efficacy of the proposed method.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献